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Stacking fault energies in aluminium 
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AbslrpEL The twin, intrinsic and extrinsic slacking fault energies together with the 
PCC-HCP stmctural energy difference are calculated for Al by means of the total 
m e r u  pseudopotenlial melhod. The .influence of supercell geometry is controlled by 
exlrapolating the calculated dam to infinite cell size. All calculations include full inter- 
planar relaxalions and lhe final inler-planar separations are presented and shown to vary 
systematically for the three slacking faults. The calculated stacking fault energies are 
shown 10 be consistent with a simple two-parameter model which describes the effective 
inleractions behueen atomic planes. 

1. Introduction 

Developments over the last decade of computational methods in theoretical solid 
state physics together with the continued improvements in computer performance 
have made it possible to calculate a wide range of material properties. This may lead 
to a fruitful interplay between experimental and computational methods where the 
theoretical modelling of material properties can be based not only on experimental 
input but also on information from ab initio calculations on idealized systems. 

The stacking faults of crystals play an important role in materials due to 
their interaction with dislocations. Dislocations often split into partial dislocations 
with the formation of a stacking fault connecting the partials. The stacking fault 
region modifies the properties of the dislocation and is therefore important for the 
understanding of properties like dislocation mobility. An important input to the 
modelling of dislocations is therefore the relevant stacking fault energies. 

Stacking fault energies are tiny-af the order 50 meV per interface atom-and 
they therefore also constitute a rigorous test case for total energy evaluations. First 
of all, it is of course important to establish some experience and understanding of 
the reliability of the local-density-functional scheme which is at the basis of most 
electronic structure codes today. The local-density approximation aside, the different 
approaches to total energy calculations contain many other approximations involving 
the shape of the ionic potential, the basis set used to expand the wavefunctions and 
the choice of atomic cells. It is therefore also important to compare different total 
energy approaches and the stacking fault energies seem a good test case for such a 
comparison. 
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In this paper we determine the stacking fault energies by means of an ab hiti0 
method. Section 2 explains the structure of the different stacking faults of the FCC 
structure. Section 3 gives an account of the cakulational procedure used, including 
some convergence tests. In section 4 the stacking fault energies are determined 
directly by performing calculations on large supercells and the results are compared 
to other recent theoretical studies [1,2,3,4,5]. It is shown that the calculated stacking 
fault energies are consistent with an Ising model with two interaction parameters. 
Finally the inter-planar relaxations are examined. 

2. Stacking fault energies 

In a close-packed stacking sequence of close-packed layers ((111) layers in the 
FCC structure) each of the layers can be positioned in three different positions 
usually referred to as A, B, and C. The unfaulted FCC structure corresponds to 
consecutively stacking in the . . . ABCABC.. . stacking sequence, while the stacking 
sequence . . . ABAB.. . gives the hexagonal close-packed structure. The two structures 
are illustrated schematically in figure 1. Apart from these two structures, three 
planar defects are of interest. (i) The twin stacking fault. . . . ABCACBA.. . , where 
the FCC stacking sequence is reversed at one (111) plane. This is the ideal C3 
tilt grain boundary or the 180' twist grain boundary. (ii) The intrinsic stacking 
faulr, ... ABCACABC ... , where one (111) plane is missing in the FCC stacking 
sequence. This is the defecL that appears between the two partials of a split edge- 
dislocation which has a (111) plane as its slip plane. (iii) The wrinsic stacking fault, 
. . . ABCBABC.. . , where one extra (111) plane has been inserted in the Fcc stacking 
sequence. The three stacking faults are illustrated in figure 1. 

. .  " "  

Figure 1. Schematic representations of 
(a) the unfaulted Fcc Structure, (b) the 
HCP SINUC~UT~. (c) the twin SlacKlng raun, 
(d) the inrrinsic stacking fault and (e) 
the extrinsic slacking fault Ihe spins, 
o. defined in section 4 and the layer 
separation numbers, #. used in table 2 

lb) 

" .  

A f l  
(4 are indicated. 

3. The calculational method 

We use the total energy pseudopotential method [6] with the Ceperley-Alder local 
exchange-correlation potential [7]. An ab initio non-local pseudopotential of the 
Kerker type [SI is used in the Kleinman-Bylander form [9]. The potential gives an 
equilibrium lattice constant of 3.95A in good agreement with the experimental value 
of 4.05k The oneelectron Schrodinger equations are solved in a plane-wave basis 
by means of the minimization technique based on conjugate gradienu of 'kter, Payne 
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and Allan [IO]. Occupation numbers for the solutions are found by the Gaussian- 
smearing method Of Fu and Ho [ll] as modified by Needs et a1 [12]. The smearing 
width is 200meV 

Plane waves with a kinetic energy up to 150eV are included in the basis set. 
Convergence tests show that this is sufficient to determine energy differences to 
about 2meV per atom for supercells relevant for the study of stacking faults. 

The choice of k-points for integrating over the Brillouin zone is important for 
the convergence in total energy differences hetween different supercelk. The optimal 
error cancellation is obtained when exactly the same k-points in absolute coordinates 
are used for both calculations. The supercells used for the stacking faults all have 
the same projection onto the layers but with a variable number of layers included 
in the cell. The Monkhors-Pack grids 1131 we use have 8 x 8 k-points in the 
planes. Due to the different numbers of layers in the supercells it is not possible to 
maintain a complete match of k-points in the direction of the stacking and a larger 
k-point density is therefore necessary in that direction. The number of k-points in 
the direction of the stacking is varied with the height of the supercell to keep an 
approximately constant k-point density. The density of k-points in this direction ends 
up being approximately 6 times higher than in the planes in order to ensure almost 
complete convergence in the k-space integration perpendicular to the planes. With 
this construction energy differences between different supercells can be determined 
to within a few meV 

The forces are calculated according to the Hellman-Feynman theorem when 
performing ionic relaxations. Forces and stresses calculated with non-converged wave 
functions serve to determine equilibrium positions and volumes while simultaneously 
finding the solution of the KohnSham equations in the best Car-Parrinello [14] spirit. 

4. Results and discussion 

The structural energy difference between the F c c  and HCP crystal structure can be 
calculated directly as the total energy difference between two supercells-one for the 
FCC and one for the HCP structure. With interlayer relaxations included, we find an 
energy difference between the two structures of 37meV/atom = 86mJm-2/atomic 
layer (the energy of the FCC structure being the lower). The relaxation effects are 
very small. If the planar and inter-planar distances are kept k e d  at the equilibrium 
FCC values the energy difference is increased by only 0.8meV/aton i.e. by a few 
percent 

We determine the stacking fault energies using supercells and therefore have to 
pay attention to exclude fault-fault interactions through the periodic boundaries. We 
have found a direct extrapolation of the results from larger and larger supercells the 
most appealing approach, as it is free from any assumptions of the nature of the 
interaction between the faults other than that it falls off smoothly for large fault-fault 
separations. 

Figure 2 and 3 present the total energy per atom of calculations involving the 
three types of faults. The total energies are plotted against N;;6,, where N,,,, is the 
number of atoms (and layers) per supercell. For N.;b, = 0 the total energy per atom, 
tFCc, is that of an unfaulted FCC supercell geomeuy. The total energy of a super 
cell can be equated with a term summing tFCC over all atoms plus a term summing 
the fault energy over all faults plus a term describing the total fault-fault interaction 
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energy. The energy per atom in the limit where the stacking faults do not interact 
can thus be written as: 

EINatom = EPCC + Nh"ltAEfa"lt/~.t,,, (1) 

where NI,,,, is the number of faults per supercell and A El,,lt is the fault energy. 
For geometrical reasons N,,,, = 2 in the calculations involving the twin fault and 
NI,,,, = 1 for the other two faults. 

NI.,,!& 
6 4 3  2 1 

-57.1 40 

-57.1 50 

I -57.160 3 / I 
-57.180 

-57.190 
0.0 0.1 0.2 0.3 0.4 0.5 

1" 

Flgvrc 2. The (relaxed) total energies per atom 
for supercells containing two twin stacking faults 
plotted against N.&. The slope of the linear 
extrapolation through E ~ C C  for infiniteiy large 
supercells (N;: = 0) gives the twin stacking 
fault energy. Open circles indicate calculations for 
which the k-point separation perpendicular to the 
closc-packed planes is 0.0574A-'. the solid circle 
indicates a 0.0459A-1 separation. Nfault-faull is 
the number of layers separating WO faults. 

Nm",,, 
108 5 4 

r.' -57.170 

s A 

' -57.180 

0.0 0.1 0.2 0.3 
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Figure 3. Same as ngure 2, but for supercells 
containing one intrinsic stacking fault (4uares) or 
one extrinsic stacking fault (triangles). 

Figure 2 shows the results for the twin stacking fault for various unit cell sizes. 
The points in the figure all fall close to a straight line, equation (l), through 
(N,;d,,E/N,,,,)=(O,€,,) for N;d, < 0.25 i.e. for separations of the stacking 
faults of more than two layers. The deviations away from the straight line for 
large separations between the faults is of the size expected due to the finite 12-point 
sampling. The energy points indicated with open circles in figure 2 are all calculated 
for a k-point separation of 0.0574A-' perpendicular to the close-packed planes and 
thus benefit from optimal k-point error cancellation. The point indicated by a solid 
circle in  the figure has been calculated with a k-point separation of 0.0459k1. The 
energies of the perfect FCC structure (N& = 0) calculated with these two different 
k-point densities differ by only 0.3meV/atom indicating a very good convergence of 
the k-space. integration perpendicular to the planes. It is also seen that the solid circle 
lies close to the  line defined by the open circles in the figure. Figure 3 shows similar 
results for intrinsic stacking faults (shown as squares in figure 3) and for extrinsic 
stacking faults (shown as triangles in the figure). 
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By fitting equation (1) to the points for small values of N;:m, the energies of 
the three stacking faults in the limit of infinite large supercells can be evaluated to 
27meV/atom, 69meV/atom and 61meVlatom for the twin, intrinsic, and extrinsic 
stacking faults respectively (the unit ‘meV/atom’ denotes ‘meV per atomic area’, 
A = &:/4 = 7.1A, of the interface). The uncertainty in these numbers as 
estimated from the extrapolation procedure is around 10%. The effects of interlayer 
relaxations on the stacking fault energies are very small. As discussed for the HCP-FCC 
structural energy difference the changes in the energies are only of the order of a few 
percent and are therefore unimportant in a discussion of the energetics. However, 
the relaxations follow a particular pattern which gives some information about the 
interatomic interactions near the stacking faults which we shall discuss later. 

’Iflble 1 shows the calculated values of the stacking fault energies compared with 
other recent theoretical estimates and experimental values. Our results are seen 
to be in reasonable agreement with the experimental values. MacLaren et al [I] 
used the LKKR method to calculate the twin fault energy [U]. This was calculated 
as the difference between self-consistent calculations for two different structures. 
Later Crampin et al [2], still using the LKKR method, took advantage of the force 
theorem to avoid iterating to self-consistency and performed a better Brillouin zone 
sampling. The LKKR studies do not involve supercells and thus give energies for 
isolated stacking faults which do  not require extrapolation. Xu et a1 [3] performed 
all-electron LMTO calculations in the atomic-sphere approximation. They use fault- 
fault separations of up to 7 layers, which according to our studies should suffice for 
avoiding dominant fault-fault effects. Denteneer and Soler [4] used the APW method 
together with an assumed fault-fault interaction form to determine the interaction 
terms and from these they obtained estimates for the isolated fault energies. Their 
APW calculations only include fault-fault separations up to two layers. Wright er al [5 ]  
in their pseudopotential study used supercells with a separation between the stacking 
faults up to 11 layers. They estimated the energies of isolated stacking faults by 
averaging over the energies of differently separated faults. As can be seen from the 
table all of the calculations except the one by Xu er al [3] agree within what can be 
expected from the numerical uncertainly due to the finite basis sets and convergence 
in the Brillouin zone integration. There seems to be no simple explanation why the 
results from the LMTO calculation [3] do not agree with the others since the basic 
asumptions of linearization in energy and the use of the atomic-sphere approximation 
are common to some of the other calculations. 

n b l e  1 also includes the results of a set of calculations done with the local, 
empirical pseudopotential due to Heine and Abarenkov [16]. This potential has been 
used in recent studies [17,18] and gives reasonable values for the equilibrium lattice 
constant, the bulk modulus, the cohesive energy and some frozen phonon frequencies 
(see 1171; this is also verified in our studies). However, as can be seen from the 
table the stacking fault energies calculated with this potential are about a factor two 
too small compared with the ab inilio results. The former properties are governed 
by nearest-neighbour effects. The latter properties, for which the potential fails, are 
a result of subtle third-nearest-neighbour changes in atomic environment. We are 
therefore led to conclude that the empirical potential is not well suited for studies of 
such delicate long-range effects. For a review of stacking fault energies determined 
by use of empirical pseudopotentials-see Simon [19]. 

The quality of the linear fit, equation (l), with the energy points of small N;& 

2 
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able 1. Calculated results tor the stacking fault energies and the FCC-HCP slmctural 
energy difference compared with other recent ab inirio calculations and values derived 
from aperimenls [ZO]. Also included are the mulls oblained using the empirical 
potential due to Heine and Abarenkav [16]. 

HCP ’Mn Intrinsic Extrinsic 
(dm-”ayer) ( d m - 2 )  ( rdm-*)  ( d m - 2 )  

This work 86 60 156 138 

Crampin CI d 121 - 56 124 118 
xu 0 d 131 178 130 280 260 

- - Machren n 01 [I] - 59 

Denteneer and Soler [4] 71 54 126 108 
Wight n d [5] 86 74 161 151 
Empirical potential 50 34 66 55 
Experimental 1201 - 75 166 - 

in figure 2, indicates a rather short-ranged fault-fault interaction, and it is therefore 
natural to see t o  what degree a few parameter model can describe these interactions. 

We follow the technique used by Cheng er a1 [21] in their Sic studies and which 
was also used for the determination of stacking fault energies by Denteneer er al [4]. 
The spin, ui, of the i’th layer is defined as +1 or -1 depending on the position of 
the i + l th  layer. ui is +1 if the ith and i + l t h  layers follow the ABC stacking 
sequence and -1 if they follow the CBA stacking sequence-see figure 1. The total 
energy per atom is then expanded in painvie interactions between the layers as 

where i denotes the ith layer and n runs from 1 to the maximal range of the 
interaction, nm* 

If we consider only the n = 1 and n = 2 terms the stacking fault energies are: 

If one determines the two parameters, J1 and Jz from three elementaly calculations 
of the supercells of ABC, AB and ABCB stacking (these already appear in figure 2 
at N,;b, =O.O, 0.5 and 0.25), one gets: J ,  = 18.65meV and J2 = -2.125 meV: These 
values give 29meV/atom, 66meVlatom and 58meV/atom for the twin, intrinsic and 
extrinsic stacking fault energies respectively. These numbers derived from supercells 
of only up to four layers height correspond well to the values obtained above when 
using larger cells and the extrapolation procedure. We therefore conclude that the 
effects of stacking faults are indeed screened out over a few layer distances and 
the approach used by Denteneer and Soler [4] where the stacking fault energies are 
extracted from calculations on rather small supercells is justified. 

We now turn to a discussion of the inter-planar relaxations. In table 2 the relative 
changes in the inter-planar separations in % are given for the largest supercells of 
figure 2 and 3. The layer separations are defined in figure 1. 

The relaxations of the inter-planar separations are generally seen to be very 
small i.e. less than one percent in all cases. A general trend that is seen is that the 
relaxation of the separation denoted by 1 is about a 0.7% expansion and of separation 
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Tabu 2. The relative layer separation changes in R. The separations are defined in 
figure 1. 

Separation # HCP N n  Intrinsic Fxtrinsic 

0 0.7 - 0.9 0.1 
1 - 0.7 0.7 0.6 
z - -0.4 -0.3 -0.3 

2 about a 0.3% compression. The relaxation of separation 0 varies considerably 
from the intrinsic to the extrinsic stacking fault, but is an expansion in both cases. 
Altogether the relaxations are seen to be consistent with a picture of rather short- 
ranged interactions between the layers. According to the king model there is an 
energy cost of 25, (neglecting for the moment the smaller J z )  associated with a 
configuration where two layers of the same type (A, B, or C) are separated by one 
other atomic layer. The positive sign of J ,  therefore indicates that the effective 
interaction between one layer and another of the same type two layer separations 
away is repulsive. The relaxations show that a repulsive force between two such 
layers also exists leading to the expansions. The small contractions of the subsequent 
layer separations can at least partly be explained through a push-pull effect: If we 
for instance consider the twin stacking fault (figure 1) the C layers next to the central 
A layer move away from each other due to the repulsion. However, the subsequent 
B layers do not shift rigidly together with the C layers because of the interactions 
between the B layers and the central A layer. The distance between the C and B 
layers (separation 2 in table 2) will therefore decrease slightly. That the relaxations 
of the inter-planar separations can indeed be  understood in terms of painvise layer 
interactions is seen by the interesting point that determining the  relaxations within a 
pair potential model gives the same signs for the relaxations and roughly the same 
magnitudes 1221. 

5. Conclusion 

The stacking fault energies for aluminium have been determined using the total 
energy pseudopotential method. Supercell effeca are controlled by extrapolating the 
values of finite size cells to infinite cell sizes. The obsewed short-ranged fault-fault 
interactions are consistent with an king model with only two effective interaction 
parameters. The relaxations exhibit a systematic pattern related to the effective 
interactions between the layers. A comparison with other recent theoretical estimates 
and experimental values for the stacking fault energies shows a general agreement 
between the different approaches. 
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